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Abstract
 

Hooker and colleagues addressed a paradoxical situation that can arise in the application 

of multidimensional item response theory (MIRT) models to educational test data. We 

demonstrate that this MIRT paradox is an instance of the explaining-away phenomenon 

in Bayesian networks, and we attempt to enhance the understanding of MIRT models by 

placing the paradox in a broader statistical modeling perspective. 
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Hooker, Finkelman, and Schwartzman (2009) addressed a paradoxical situation
 

that can arise in the application of multidimensional item response theory (MIRT) models 

to educational test data. The paradox boils down to the fact that a correct response on 

an additional item can lead to a lower estimate for one of the latent ability variables, 

whereas an incorrect response can lead to a higher estimate (Van der Linden, 2012). 

Hooker et al. (2009) argued that this is unfair to test takers. Various different appearances, 

generalizations, and implications of the paradox have been studied by numerous authors 

over the past few years (Finkelman, Hooker, & Wang, 2010; Hooker, 2010; Hooker & 

Finkelman, 2010; Jordan & Spiess, 2012; Van der Linden, 2012). The stated paradoxical 

situation is related to the explaining-away phenomenon in Bayesian networks (Pearl, 2009; 

Wellman & Henrion, 1993), which in statistics is known as Berkson’s paradox (Berkson, 

1946). In this report, we demonstrate that the MIRT paradox is an instance of this 

phenomenon, and we attempt to enhance the understanding of MIRT models by placing 

the paradox in a broader statistical modeling perspective, namely, that of graphical models 

and Bayesian networks (Mislevy, 1994; Pearl, 2009; Williamson, 2005). These frameworks 

provide a shorthand for the probabilistic relationships of interest and can help understand 

the properties of these relationships. We discuss a small number of MIRT modeling 

examples in these frameworks, illustrating the relation between the MIRT paradox and the 

explaining-away phenomenon, and we end with some concluding remarks. 

1 Examples 

In the following examples, we will adhere to parametric IRT in the framework of 

generalized nonlinear mixed models (Mellenbergh, 1994; Rijmen, Tuerlinckx, De Boeck, 

& Kuppens, 2003), and we will make additional assumptions as needed; that is, we do 

not make assumptions about the types of items (continuous or discrete; dichotomous 

or polytomous), the types of latent variables (continuous or discrete), and the response 

functions (linear, normal, or logistic). We assume that both item response variables and 

latent variables are random and that item response variables can be observed, whereas 

latent variables cannot. (Because we make as few assumptions as possible, standard linear 
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factor models are included here as well.) An important assumption in both unidimensional 

and multidimensional IRT models is monotonicity. Monotonicity requires the probabilities 

for the item variables to be strictly increasing or decreasing in each latent variable, and 

MIRT models are monotone if and only if the latent variables are compensatory (Holland 

& Rosenbaum, 1986; Van der Linden, 2012). Strictly speaking, we do not need to make 

the monotonicity assumption, but then a unidimensional IRT model for which local 

independence holds can always be specified for a set of item variables (Suppes & Zanotti, 

1981). Therefore we need to keep the assumption of monotonicity and will illustrate other 

assumptions, such as local independence, through the examples. In all our examples, we 

have chosen to use six items to keep things simple yet nontrivial. Furthermore, we assume 

that the first five items are already observed so that the sixth item is always the focal 

additional item that possibly creates the paradoxical situation. 

Figure 1 displays a partially directed acyclic graph (DAG) of a MIRT model with 

two latent variables θ1 and θ2 and six item response variables X1, X2, . . . , X6. (It is called 

partially directed because not all the lines in the graph have arrowheads. A partial DAG is 

also referred to as a chain graph.) This model is said to be of simple structure, also referred 

to as a between-item two-dimensional IRT model, because every item response variable 

is linked to a single latent variable only. In the graph, the nodes correspond to random 

variables, and the directed edges represent conditional dependency relations. An advantage 

of using graphical models is that there is a correspondence between the property of 

separation of the nodes in the graph and conditional independence of the random variables 

in the statistical model. For example, the path X1 ← θ1 → X2 in Figure 1 illustrates an 

instance of so-called d-separation (Pearl, 2009, pp. 16–17); that is, the only path from X1 to 

X2 runs through θ1, and the arrows do not meet head to head at θ1. The fact that X1 and X2 

are d-separated in the graph implies that they are conditionally independent given θ1. We 

can generalize this to all six items in the example, and obtain the familiar IRT assumption 

of local independence: the joint probability of X1, X2, . . . , X6 is conditional on θ1 and θ2 can �3 �6be written as a simple product: Pr(X1, X2, . . . , X6|θ1, θ2) = Pr(Xj |θ1) Pr(Xj |θ2).j=1 j=4 

Because of the correspondence between d-separation and conditional independence, it is 
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possible to determine all conditional independence relations that are entailed solely by
 

working with the graph. Now, the MIRT paradox revolves around the beliefs about θ1 and 

θ2 in different situations. In describing the paradox, Hooker et al. (2009) always seemed to 

condition implicitly on X1, X2, . . . , X5. Keeping this in mind, the MIRT paradox cannot 

arise for the model in Figure 1 because the only path between θ1 and θ2 is the undirected 

edge; that is, conditional on X1, X2, . . . , X5, the additional observation of X6 does not affect 

the belief about θ1 in an unexpected manner. 
3

θ1 θ2

X1 X2 X3 X4 X5 X6

Figure 1.

Partially directed acyclic graph of two-dimensional IRT model with between-item multidimensionality
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do not need to make the monotonicity assumption, but then a unidimensional IRT model for

which local independence holds can always be specified for a set of item variables (Suppes &

Zanotti, 1981). Therefore, we need to keep the assumption of monotonicity and will illustrate

other assumptions such as local independence through the examples. In all our examples, we

have chosen to use six items in order to keep things simple, yet nontrivial. Furthermore, we

assume that the first five items are already observed, so that the sixth item is always the focal

additional item that possibly creates the paradoxical situation.

Figure 1 displays a partially directed acyclic graph (DAG) of a MIRT model with two latent

variables θ1 and θ2, and six item response variablesX1,X2, . . . ,X6. (It is called partially directed,

because not all the lines in the graph have arrowheads. A partial DAG is also referred to as a

chain graph.) This model is said to be of simple structure, also referred to as a between-item

Figure 1. Partially directed acyclic graph of two-dimensional item response 

theory model with between-item multidimensionality. 

Figure 2 shows the DAG of a two-dimensional IRT model for six items with so-called 

within-item multidimensionality for items 3 and 4. In this figure, the paths θ1 → X3 ← θ2 

and θ1 → X4 ← θ2 are so-called inverted forks and contain the first and foremost step of 

explaining what happens in the MIRT paradox. These paths between θ1 and θ2 are not 

blocked by X3 and X4 because the edges on these paths meet head to head. Therefore θ1 

and θ2 are not d-separated by X3 and X4, and conditional independence between θ1 and 

θ2 given X3 and X4 is not implied. We note that this kind of conditional independence is 

different from that typically used in IRT because we condition here on observed variables 

instead of on unobserved variables. Now, even if θ1 and θ2 are independent a priori, they 

become dependent when we condition on X1, . . . , X5. Furthermore, the observation of X6 

can affect the belief about θ1 in an unanticipated fashion. This at first sight counterintuitive 

phenomenon is called the explaining-away effect. We refrain from giving substantive 
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examples to be concise and because intuitive examples of this phenomenon are described
 

by many authors (e.g., Berkson, 1946; Bishop, 2006, p. 378; Hooker & Finkelman, 2010, p. 

251; Pearl, 2009, p. 17). 
5
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Figure 2.

Directed acyclic graph of two-dimensional IRT model with within-item structure

not implied. We note that this kind of conditional independence is different from that typically

used in IRT, because we condition here on observed variables instead of on unobserved variables.

Now, even if θ1 and θ2 are independent a priori, they become dependent when we condition on

X1, . . . ,X5. Furthermore, the observation of X6 can affect the belief about θ1 in an unanticipated

fashion. This at first sight counterintuitive phenomenon is called the explaining away effect. We

refrain from giving substantive examples in order to be concise, and because intuitive examples

of this phenomenon are described by many authors, e.g., Berkson (1946), Bishop (2006, p. 378),

Pearl (2009, p. 17), and Hooker and Finkelman (2009, p. 251).

We emphasize that this explaining way phenomenon can arise as long as there is at least

one inverted fork on the paths between θ1 and θ2 through X1,X2, . . . ,X5, and does not depend

on the particular relation of θ1 and θ2 with X6. We illustrate this by two other instances of

the phenomenon. The first case is illustrated in Figure 3, in which the focal sixth variable

is not an item response, but the variable gender, where gender is related to θ2. Obviously,

observing gender changes the belief about θ2, but the belief about θ1 can be affected in an

unexpected manner due to the inverted forks. Again, this dependency can arise when θ1 and

θ2 are a priori independent and when θ1 is unrelated to gender (as is the case in Figure 3).

This example is particularly interesting, because many applications of multidimensional IRT

models with background variables are found in large scale assessments such as the Programme

for International Student Assessment (PISA; Adams, Wilson, & Wu, 1997) and the National

Figure 2. Directed acyclic graph of two-dimensional item response theory model 

with within-item structure. 

We emphasize that this explaining-away phenomenon can arise as long as there is 

at least one inverted fork on the paths between θ1 and θ2 through X1, X2, . . . , X5 that does 

not depend on the particular relation of θ1 and θ2 with X6. We illustrate this by two other 

instances of the phenomenon. The first case is illustrated in Figure 3, in which the focal 

sixth variable is not an item response but the variable gender, where gender is related to 

θ2. Obviously, observing gender changes the belief about θ2, but the belief about θ1 can be 

affected in an unexpected manner owing to the inverted forks. Again, this dependency can 

arise when θ1 and θ2 are a priori independent and when θ1 is unrelated to gender (as is 

the case in Figure 3). This example is particularly interesting because many applications 

of multidimensional IRT models with background variables are found in large-scale 

assessments such as the Programme for International Student Assessment (PISA; Adams, 

Wilson, & Wang, 1997) and the National Assessment of Educational Progress (NAEP; 

Mislevy, 1985). (However, we note that the current MIRT models in PISA and NAEP have 

a between-item structure, as in Figure 1.) A second instance can be constructed when we 

relate gender to an item response variable instead of to a latent variable. This situation is 

given in Figure 4, where gender-related differential item functioning appears on the fifth 

item. Observing gender affects the belief about θ2 through X5 as well as the belief about θ1 
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because of the inverted forks. To reiterate, paradoxical results in all these instances are not
 

to be attributed to the focal sixth variable but to the inverted forks in other parts of the 

model. 
6

θ1 θ2

X1 X2 X3 X4 X5 Gender

Figure 3.

Directed acyclic graph of two-dimensional IRT model with within-item structure and relation between

gender and θ2

θ1 θ2

X1 X2 X3 X4 X5 Gender

Figure 4.

Directed acyclic graph of two-dimensional IRT model with within-item structure and gender-related DIF

for X5.

Assessment of Education Progress (NAEP; Mislevy, 1985). (However, we note that the current

MIRT models in PISA and NAEP have a between-item structure as in Figure 1.) A second

instance can be constructed when we relate gender to an item response variable instead of a latent

variable. This situation is given in Figure 4, where gender-related differential item functioning

(DIF) appears on the fifth item. Observing gender affects the belief about θ2 through X5, and

the belief about θ1 as well because of the inverted forks. To reiterate, paradoxical results in all

these instances are not to be attributed to the focal sixth variable, but to the inverted forks in

other parts of the model.

Hooker and Finkelman (2010) considered the MIRT paradox in models for item bundles.

They focused on two models: the bi-factor model and the testlet model. In the bi-factor model,

every item loads on a general dimension and on an item bundle dimension. Hooker and Finkelman

(2010) discussed two cases, one in which all latent variables are assumed to be independent,

Figure 3. Directed acyclic graph of two-dimensional item response theory model 

with within-item structure and relation between gender and θ2. 
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other parts of the model.
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(2010) discussed two cases, one in which all latent variables are assumed to be independent,

Figure 4. Directed acyclic graph of two-dimensional item response theory model 

with within-item structure and gender-related differential item functioning for 

X5. 

Hooker and Finkelman (2010) considered the MIRT paradox in models for item 

bundles. They focused on two models: the bifactor model and the testlet model. In the 

bifactor model, every item loads on a general dimension and on an item bundle dimension. 

Hooker and Finkelman discussed two cases, one in which all latent variables are assumed to 

be independent and one in which the item bundle dimensions are correlated. Independent 

latent variables are typically assumed to identify the bifactor model, which is the situation 
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that we consider. An example of the bifactor model is represented in a DAG in Figure 

5. Hooker and Finkelman consider a result to be paradoxical if answering an additional 

item (X6) correctly results in a lower estimate for the general ability (θ1) than when the 

additional item is answered incorrectly. From Figure 5, it follows that θ1 and θ3 are not 

d-separated, that is, there are paths between θ1 and θ3 that contain an inverted fork (in fact, 

all paths do). Hence the explaining-away phenomenon can occur, and paradoxical results 

are possible for this bifactor model. Hooker and Finkelman (2010) derived mathematically 

the specific conditions under which paradoxical results occur for the more general bifactor 

model. From their mathematical derivations, it follows that paradoxical results are not 

possible when the loadings of the bifactor model are restricted according to the so-called 

testlet model (a testlet model is a restricted bifactor model; see Rijmen, 2010). The fact 

that paradoxical results cannot occur for the testlet model (with independent nuisance 

dimensions) can be shown directly by looking at the corresponding DAG, alleviating the 

need for mathematical derivations. First, one should realize that the testlet model is a 

Schmid–Leiman transformed second-order model (see, e.g., Yung, Thissen, & McLeod, 

1999). Then, the conditional independence relations can be observed from the DAG of the 

equivalent second-order model, which is presented in Figure 6. In this figure, it is easily seen 

that θ1 and θ3 are always dependent because the path from θ1 to θ3 has a directed edge. 

However, θ1 is independent from X4, X5, and X6 is conditional on θ3; that is, conditional 

on θ3, the observation of X6 does not change the belief about θ1 in an unexpected manner. 

Therefore, as long as monotonicity holds, paradoxical results cannot occur in this case. 

2 Concluding Remarks 

We have shown that the MIRT paradox utilized by Hooker et al. (2009) is an 

instance of the explaining-away phenomenon. Specifically, the so-called inverted fork in the 

path between latent variables is the main cause of the phenomenon. In many of the MIRT 

paradox papers, intuitions are built up from an educational measurement perspective, which 

causes the result to be surprising. However, we made use of the frameworks of graphical 

models and Bayesian networks in which this phenomenon is well established. We chose 
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θ1

θ2 θ3

X1 X2 X3 X4 X5 X6

Figure 6.

Directed acyclic graph of second-order (or testlet) three-dimensional IRT model.

Concluding remarks

We have shown that the MIRT paradox utilized by Hooker, Finkelman, and Schwartzman

(2009) is an instance of the explaining away phenomenon. Specifically, the so-called inverted fork

in the path between latent variables is the main cause of the phenomenon. In many of the MIRT

paradox papers, intuitions are built up from an educational measurement perspective, which

cause the result to be surprising. However, we made use of the frameworks of graphical models

and Bayes networks in which this phenomenon is well established. We chose these frameworks,

because the conditional dependencies between the variables in a specific model can be derived

directly from its graph, independent of different parameterizations and link functions.

Figure 5. Directed acyclic graph of bifactor three-dimensional item response 

theory model. 

these frameworks because the conditional dependencies between the variables in a specific 

model can be derived directly from its graph, independent of different parameterizations 

and link functions. 

The work of Hooker et al. (2009) is nevertheless to be lauded because they described 

the exact mechanics of the paradox in MIRT in great detail. We disagree, however, with the 

somewhat pessimistic conclusions of Jordan and Spiess (2012) and Van der Linden (2012) 

on the usefulness of MIRT models. The MIRT paradox is a general statistical paradox that 

holds for many models with multiple competing explanatory variables and is accepted in 

many contexts other than psychometrics such as biostatistics and artificial intelligence. We 

find that the issue of test fairness raised by Hooker et al. (2009) and Jordan and Spiess 

(2012) results from confounding different views on the purpose of tests. For example, 

Holland (1994) distinguished between tests as contests and tests as measurement. The 

contest view can result in a firm belief that more items correct should result in a higher 

score, a feature that nevertheless pertains to relatively few IRT models (Van der Linden, 

2012). In the measurement view, model selection is perhaps the most important issue so 

that test-based inferences are sound. A third view on tests, raised by Mislevy (1994), 

suggests that tests can be used as sources of information for evidentiary reasoning about 

students, for example, as in models for cognitive diagnosis. Preventing paradoxical results 
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(2009) is an instance of the explaining away phenomenon. Specifically, the so-called inverted fork

in the path between latent variables is the main cause of the phenomenon. In many of the MIRT

paradox papers, intuitions are built up from an educational measurement perspective, which

cause the result to be surprising. However, we made use of the frameworks of graphical models

and Bayes networks in which this phenomenon is well established. We chose these frameworks,

because the conditional dependencies between the variables in a specific model can be derived
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Figure 6. Directed acyclic graph of second-order (or testlet) three-dimensional 

item response theory model. 

might be relevant in the contest perspective on tests, but we argue that it is less relevant in 

the latter two perspectives on the purposes of educational tests. 
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